mindmeld.models.containers module¶
-
class
mindmeld.models.containers.
GloVeEmbeddingsContainer
(token_dimension=300, token_pretrained_embedding_filepath=None)[source]¶ Bases:
object
This class is responsible for the downloading, extraction and storing of word embeddings based on the GloVe format.
To facilitate not loading the large glove embedding file to memory everytime a new container is created, a class-level attribute with a hashmap is created.
TODO: refactor the call-signature similar to other containers by accepting pretrained_path_or_name instead of token dimension and filepath. Also deprecate these two arguments.
-
get_pretrained_word_to_embeddings_dict
()[source]¶ Returns the word to embedding dict.
Returns: word to embedding mapping. Return type: (dict)
-
ALLOWED_WORD_EMBEDDING_DIMENSIONS
= [50, 100, 200, 300]¶
-
CONTAINER_LOOKUP
= {}¶
-
EMBEDDING_FILE_PATH_TEMPLATE
= 'glove.6B.{}d.txt'¶
-
-
class
mindmeld.models.containers.
HuggingfaceTransformersContainer
(pretrained_model_name_or_path, quantize_model=False, cache_lookup=True, from_configs=False)[source]¶ Bases:
object
- This class is responsible for the downloading and extraction of transformers models such as
- BERT, Multilingual-BERT, etc. based on the https://github.com/huggingface/transformers format.
To facilitate not loading the large glove embedding file to memory everytime a new container is created, a class-level attribute with a hashmap is created.
-
CONTAINER_LOOKUP
= {}¶
-
class
mindmeld.models.containers.
SentenceTransformersContainer
(pretrained_name_or_abspath, bert_output_type='mean', quantize_model=False)[source]¶ Bases:
object
This class is responsible for the downloading and extraction of sentence transformers models based on the https://github.com/UKPLab/sentence-transformers format.
To facilitate not loading the large glove embedding file to memory everytime a new container is created, a class-level attribute with a hashmap is created.
-
CONTAINER_LOOKUP
= {}¶
-
-
class
mindmeld.models.containers.
TqdmUpTo
(iterable=None, desc=None, total=None, leave=True, file=None, ncols=None, mininterval=0.1, maxinterval=10.0, miniters=None, ascii=None, disable=False, unit='it', unit_scale=False, dynamic_ncols=False, smoothing=0.3, bar_format=None, initial=0, position=None, postfix=None, unit_divisor=1000, write_bytes=None, lock_args=None, nrows=None, colour=None, delay=0, gui=False, **kwargs)[source]¶ Bases:
tqdm.std.tqdm
Provides update_to(n) which uses tqdm.update(delta_n).