Internationalization support

MindMeld supports most languages that can be tokenized like English. If the language does not use spaces between words or has many non-English-like punctuation marks, pre-process the data to remove punctuations and add spaces between words.

Apart from tokenization, there are two optional MindMeld components, Stemming and System entity resolution, that only support a subset of languages. The limitations of these two components are discussed below.

Setting up language configuration

MindMeld supports ISO 639-1 and ISO 639-2 language codes and ISO 3166-2 locale codes. Locale codes are represented as ISO 639-1 language code and ISO3166 alpha 2 country code separated by an underscore character, for example, en_US.

To use a particular language or locale in MindMeld, the config.py file needs to configured as follows:

LANGUAGE_CONFIG = {
    'language': 'en',
    'locale': 'en_CA'
}

If the language and locale codes are not configured in config.py, MindMeld uses this default:

LANGUAGE_CONFIG = {
    'language': 'en',
    'locale': 'en_US'
}

Language stemming

Stemming is an important, language-dependent NLP process that transforms a word to an approximation of its root form. Stemming can be useful for some languages like English but not for others like Vietnamese. MindMeld supports the following ISO 639-1 language codes for stemming: [EN, DA, NL, AR, FR, DE, HU, IT, NO, PT, RU, RO, ES, SV, FI].

System entity resolution

For system entity resolution, the following ISO 639-1 language codes are currently supported: [AR, BG, BN, CS, DA, DE, EL, EN, ES, ET, FI, FR, GA, HE, HI, HR, HU, ID, IS, IT, JA, KA, KN, KM, KO, LO, ML, MN, MY, NB, NE, NL, PL, PT, RO, RU, SV, SW, TA, TH, TR, UK, VI, ZH].

Moreover, the following ISO 3166-2 locale codes are supported per language:

  1. EN: [AU, BZ, CA, GB, IN, IE, JM, NZ, PH, ZA, TT, US]
  2. NL: [BE, NL]
  3. ZH: [CN, HK, MO, TW]

Locale-based resolution

For languages supported by system entity resolution, one can change the resolution of system entities like sys_time entities by varying the locale in the process function call. In the example below, the time entity is resolved differently based on if the locale is en_CA or en_US.

nlp.process('Is the Main Street location open for Thanksgiving', locale='en_CA')
{ 'domain': 'store_info',
  'intent': 'find_nearest_store',
  'entities': [ { 'role': None,
                  'span': {'end': 49, 'start': 37},
                  'text': 'Thanksgiving',
                  'type': 'sys_time',
                  'value': [ { 'grain': 'day',
                               'value': '2020-10-12T00:00:00.000-07:00'}]}],
  'text': 'Is the Main Street location open for Thanksgiving?'
}
nlp.process('Is the Main Street location open for Thanksgiving', locale='en_US')
{ 'domain': 'store_info',
  'intent': 'find_nearest_store',
  'entities': [ { 'role': None,
                  'span': {'end': 49, 'start': 37},
                  'text': 'Thanksgiving',
                  'type': 'sys_time',
                  'value': [ { 'grain': 'day',
                               'value': '2020-11-26T00:00:00.000-08:00'}]}],
  'text': 'Is the Main Street location open for Thanksgiving?'
}