Source code for mindmeld.text_preparation.tokenizers

# -*- coding: utf-8 -*-
#
# Copyright (c) 2015 Cisco Systems, Inc. and others.  All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""This module contains Tokenizers."""

from abc import ABC, abstractmethod
import logging
import unicodedata

from .spacy_model_factory import SpacyModelFactory
from ..components._config import ENGLISH_LANGUAGE_CODE
from ..constants import (
    UNICODE_NON_LATIN_CATEGORY,
    UNICODE_SPACE_CATEGORY,
)

logger = logging.getLogger(__name__)


[docs]class Tokenizer(ABC): """Abstract Tokenizer Base Class.""" def __init__(self): """Creates a tokenizer instance.""" pass
[docs] @abstractmethod def tokenize(self, text): """ Args: text (str): Input text. Returns: tokens (List[str]): List of tokens. """ raise NotImplementedError("Subclasses must implement this method")
[docs] def tojson(self): """ Method defined to obtain recursive JSON representation of a TextPreparationPipeline. Args: None. Returns: JSON representation of TextPreparationPipeline (dict) . """ return {self.__class__.__name__: None}
[docs]class NoOpTokenizer(Tokenizer): """A No-Ops tokenizer.""" def __init__(self): """Initialize the NoOpTokenizer.""" pass
[docs] def tokenize(self, text): """Returns the original text as a list. Args: text (str): Input text. Returns: tokens (List[str]): List of tokens. """ return [text]
[docs]class CharacterTokenizer(Tokenizer): """A Tokenizer that splits text at the character level.""" def __init__(self): """Initializes the CharacterTokenizer.""" pass
[docs] def tokenize(self, text): """ Split characters into separate tokens while skipping spaces. Args: text (str): the text to tokenize Returns: tokens (List[Dict]): List of tokenized tokens which a represented as dictionaries. Keys include "start" (token starting index), and "text" (token text). For example: [{"start": 0, "text":"hello"}] """ if text == "": return [] tokens = [] for idx, char in enumerate(text): if not char.isspace(): tokens.append({"start": idx, "text": char}) return tokens
[docs]class LetterTokenizer(Tokenizer): """A Tokenizer that splits text into a separate token if the character proceeds a space, is a non-latin character, or is a different unicode category than the previous character. """ def __init__(self): """Initializes the LetterTokenizer.""" pass
[docs] def tokenize(self, text): """ Identify tokens in text and create normalized tokens that contain the text and start index. Args: text (str): the text to tokenize Returns: tokens (List[Dict]): List of tokenized tokens which a represented as dictionaries. Keys include "start" (token starting index), and "text" (token text). For example: [{"start": 0, "text":"hello"}] """ if text == "": return [] token_num_by_char = LetterTokenizer.get_token_num_by_char(text) return LetterTokenizer.create_tokens(text, token_num_by_char)
[docs] @staticmethod def get_token_num_by_char(text): """Determine the token number for each character. More details about unicode categories can be found here: http://www.unicode.org/reports/tr44/#General_Category_Values. Args: text (str): The text to process and get actions per character. Returns: token_num_by_char (List[str]): Token number that each character belongs to. Spaces are represented as None. For example: [1,2,2,3,None,4,None,5,5,5] """ category_by_char = [unicodedata.category(x) for x in text] token_num_by_char = [] token_num = 0 for index, category in enumerate(category_by_char): if category == UNICODE_SPACE_CATEGORY: token_num_by_char.append(None) continue prev_category = category_by_char[index - 1] if index > 0 else None # General Category is represented by the first letter of a Unicode category. same_general_category = ( category[0] == (prev_category[0] if prev_category else None) ) if UNICODE_NON_LATIN_CATEGORY in (category, prev_category) or not same_general_category: token_num += 1 token_num_by_char.append(token_num) return token_num_by_char
[docs] @staticmethod def create_tokens(text, token_num_by_char): """ Generate token dictionaries from the original text and the token numbers by character. Args: text (str): the text to tokenize token_num_by_char (List[str]): Token number that each character belongs to. Spaces are represented as None. For example: [1,2,2,3,None,4,None,5,5,5] Returns: tokens (List[Dict]): List of tokenized tokens which a represented as dictionaries. Keys include "start" (token starting index), and "text" (token text). For example: [{"start": 0, "text":"hello"}] """ if text == "": return [] tokens = [] token_text = "" for index, token_num in enumerate(token_num_by_char): if not token_num: continue if not token_text: start = index token_text += text[index] is_last_char = index == len(token_num_by_char) - 1 # Close off entity if char is the last or if next char is a different token number if is_last_char or ( not is_last_char and token_num != token_num_by_char[index + 1] ): tokens.append({"start": start, "text": token_text}) token_text = "" return tokens
[docs]class WhiteSpaceTokenizer(Tokenizer): """A Tokenizer that splits text at spaces.""" def __init__(self): """Initializes the WhiteSpaceTokenizer.""" pass
[docs] def tokenize(self, text): """ Identify tokens in text and token dictionaries that contain the text and start index. Args: text (str): the text to tokenize Returns: tokens (List[Dict]): List of tokenized tokens which a represented as dictionaries. Keys include "start" (token starting index), and "text" (token text). For example: [{"start": 0, "text":"hello"}] """ if text == "": return [] tokens = [] token = {} token_text = "" # Space added at the end of text to close off the last token for i, char in enumerate(text + " "): if char.isspace(): if token and token_text: token["text"] = token_text tokens.append(token) token = {} token_text = "" continue if not token_text: token = {"start": i} token_text += char return tokens
[docs]class SpacyTokenizer(Tokenizer): """A Tokenizer that uses Spacy to split text into tokens.""" def __init__(self, language, spacy_model_size="sm"): """Initializes a SpacyTokenizer. Args: language (str, optional): Language as specified using a 639-1/2 code. spacy_model_size (str, optional): Size of the Spacy model to use. ("sm", "md", or "lg") """ self.spacy_model = SpacyModelFactory.get_spacy_language_model( language, spacy_model_size, disable=["tagger", "parser", "ner", "attribute_ruler", "lemmatizer"] ) assert self.spacy_model.pipeline == []
[docs] def tokenize(self, text): """ Args: text (str): Input text. Returns: tokens (List[Dict]): List of tokenized tokens which a represented as dictionaries. Keys include "start" (token starting index), and "text" (token text). For example: [{"start": 0, "text":"hello"}] """ if text == "": return [] spacy_tokens = [(token.text, token.idx) for token in self.spacy_model(text)] tokens = [] for token_text, token_idx in spacy_tokens: token = {"start": token_idx, "text": token_text} tokens.append(token) return tokens
[docs]class TokenizerFactory: """Tokenizer Factory Class"""
[docs] @staticmethod def get_tokenizer( tokenizer: str, language=ENGLISH_LANGUAGE_CODE, spacy_model_size="sm" ): """A static method to get a tokenizer Args: tokenizer (str): Name of the desired tokenizer class language (str, optional): Language as specified using a 639-1/2 code. spacy_model_size (str, optional): Size of the Spacy model to use. ("sm", "md", or "lg") Returns: (Tokenizer): Tokenizer Class """ tokenizer_classes = { NoOpTokenizer.__name__: NoOpTokenizer, CharacterTokenizer.__name__: CharacterTokenizer, LetterTokenizer.__name__: LetterTokenizer, WhiteSpaceTokenizer.__name__: WhiteSpaceTokenizer, SpacyTokenizer.__name__: lambda: SpacyTokenizer(language, spacy_model_size), } tokenizer_class = tokenizer_classes.get(tokenizer) if not tokenizer_class: raise TypeError(f"{tokenizer} is not a valid Tokenizer type.") return tokenizer_class()
[docs] @staticmethod def get_default_tokenizer(): """Creates the default tokenizer (WhiteSpaceTokenizer) irrespective of the language of the current application. Args: language (str, optional): Language as specified using a 639-1/2 code. Returns: (Tokenizer): Tokenizer Class """ return WhiteSpaceTokenizer()